Super short summary: more accurate drafting is more effective drafting.

Summary for Statheads: Improving the draft accuracy of a single team improves the quality of draft choices picked across the entire draft. Simulations at draft error levels of 0.8 and 0.6 rounds respectively show that the effect is on the order of 7 and 5 picks. In other words, someone picking 12th at a noise level of 0.8, that picks twice as accurately as the norm, has picks equivalent to a team slotted into the 5th position. At a noise level of 0.6, their picks would be equivalent to someone picking in the 7th position. The implications of these findings based on PFR’s approximate value stat and draft round are discussed.

Recently, we posted data showing that the draft error of NFL teams can be estimated based on the kinds of reaches observed in the draft, and our estimated range of error was from 0.5 to 1.0 rounds of error per draft pick. Taking these ideas further, I wanted to examine what would happen to a team that picked twice as accurately as its peers. By accurately, the error of its scouts are half  that of all the other teams. What advantages would they gain?

Figure 1. Pick improvement as a function of round at draft error = 0.8 round

Figure 2. Pick improvement as a function of round at draft error = 0.6 round.

The charts above plot “effective draft position” (i.e. improvements in the value of draft picks, as ranked by the draft position, or slot, they should have been picked) as a function of round, for teams with improved drafting ability. This term can be converted, using Pro Football Reference’s formula for estimated approximate value per slot, into a difference in estimated approximate value for such a choice, and those plots are given below.

Figure 3. AV improvement as a function of round at draft error = 0.8 round.

Figure 4. AV improvement as a function of round at draft error = 0.6 round.

That these results are not unique to these particular error levels is also true, as we calculated estimated AV improvements for a team picking 10th and one picking 20th at error levels of 0.4 as well. 0.4 is so low, in my opinion, as to be unbelievable, but even  then, you can see advantages to the team that drafts well.

One last point. Notice the jump in advantage from the 3rd to 4th round using our model of drafting? That jump is a function of less intense drafting of those players whose first ranking is less than 8.0, and therefore a product of a specific feature in the model. The notion that good teams improve as scouting resources become more scarce is not.

Good teams should  be expected to do markedly better the fewer scouting resources are applied to each player. Where that happens in the real NFL is beyond the scope of this study, but that it almost certainly does happen seems evident. Teams that are expert at drafting will show their expertise more and more as the draft goes on. Or, said another way, anyone with a copy of USA Today or an ESPN Insider subscription can draft a first rounder. It takes really good teams to take best advantage of late round draft choices.